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The free fermion solution/approximation for the Ising model on a triangular 
lattice with further-neighbor interactions is derived, using Vdovichenko's 
method. For isotropic first- and second-neighbor interactions K, L>~0, the 
approximation is a strict lower bound for the partition sum. We have also 
obtained the approximate critical surface, where the critical behavior is Ising- 
like, and the exact zero-temperature phase diagram when the interactions are 
isotropic. A recent extension of the method of Vdovichenko due to Calheiros 
et al. makes it easy to give the surface free energy and the equilibrium crystal 
shape as well, in the ferromagnetic regime and for a regime where the phase is 
ordered in layers. 
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I N T R O D U C T I O N  

Since Onsager ' s  so lu t ion  of the 2D Ising mode l  (1/ many  efforts have been 
made  to extend the so lu t ion  to include fu r the r -ne ighbor  interact ions.  Such 
solut ions  would  a l low for a bet ter  mode l ing  of real magnet ic  systems (2) and  
of course  of all o ther  systems tha t  can be m a p p e d  on to  the Ising mode l  
such as, e.g., recent models  for microemuls ions/3 '4)  The  only general iza-  
t ions a long  this line tha t  have led to exact  so lu t ions  are the free fermion 
models  (models  that  can be rewri t ten  as free fermion field theories(5)), 
where still cer ta in  res t r ic t ions  have to be imposed  on the values a l lowed 
for the coupl ing  constants .  But for a large range  of values where these 
condi t ions  are  no t  met,  s imply  ignor ing  them still p rovides  a good  approx-  
ima t ion  to the real so lu t ion  (the so-cal led free fermion approximat ion(6)) .  
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Of the different methods that can be employed to solve these models, 
Vdovichenko's method (7 lO) has the advantage that it can easily be 
extended to yield the surface tension (1H3) as well as the corresponding 
equilibrium crystal shape. (12'13) 

In this paper we present the free fermion solution/approximation for 
the Ising model with first- and second-neighbor interactions and a four-spin 
interaction on a triangular lattice, using the method of Vdovichenko. (8) 
In Section 1 we define the model and rewrite it as a vertex-pair model on 
the dual lattice. The zero-temperature phase diagram of the isotropic model 
is given in Section 2. In Section 3 we derive the free fermion conditions 
for which the solution will be exact and in Section 4 we calculate the, in 
general approximate, partition sum and discuss the accuracy of the 
approximation. The approximate critical surface of the model is derived in 
Section 5 and in Section 6 we study the surface free energy. 

1. THE M O D E L  

Consider a triangular lattice consisting of N sites with periodic bound- 
ary conditions. On every site there is an Ising spin ~r= _+1. Any two 
neighboring elementary triangles of the lattice form a diamond. To each 
diamond we assign three interactions (see Fig. 1), a first- and second- 
neighbor interaction Ki and Li (along the two diagonals of the diamond) 
and a four-spin interaction Qi, i =  1, 2, or 3. In the interaction constants 
we have already absorbed a factor 1/kB T for later convenience. Note that 
each triangle is part of three diamonds (the diamonds overlap), one in each 
possible orientation. For each of the three orientations i a diamond can 
occur in eight different configurations q, depicted in Fig. 2. The energy E 
of a configuration of the system is given by 

3 8 

E= ~ ~ n~(q) e~(q) (1.1) 
i=1 q - I  

2 7 2 / \ / \ X  
Fig. 1. The lattice is seen as built up out of overlapping diamonds. We assign to each 
diamond a first- and second-neighbor interaction and a four-spin interaction, with coupling 
constants Ki, Li, and Qr respectively, whose values are different for each orientation i. 
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Fig. 2. A diamond on the original lattice corresponds to a vertex pair on the dual lattice. 
The figure shows all possible configurations q= 1,..., 8 for a vertex pair in orientation 1, 
together with their weights O)l(q). 

where 

ei(q) = -(Kia163 + Lfl72~4 -1- Qial o2 a3 a4) (1.2) 

is the energy of a d i amond  of type (i, q), and ni(q) is the number  of times 
this d i amond  occurs in the configuration.  

Thus  the par t i t ion sum becomes 

3 8 

z= Z ~ Z [~~ "'~ (1.3) 
{ c o n f i g u r a t i o n s }  i =  1 q - -  1 

with 

~oi(q) = exp [ - ei(q)] (1.4) 

The par t i t ion sum is invar iant  under  the following t ransformat ion.  
Reverse all spins on every other  line parallel to one of three principal axes 
and combine  it with a change of sign of the coupling constants  K and L 
in the other  two directions. Hence we have 

Z(K1, g2, g3, L1, L2, Z3, Q,, Q2, Q3) 

=Z(-K1,-K2,  K3, -L~, -L2, L3, Q1,Q2, Q3 ) (1.5) 

=Z(-K~,K2, -K3, -L~ ,L  2, -L3, Q1, Q2, Q3) (1.6) 

= Z(K1, -1s - K 3 ,  L~, -L2, -L3, Q~, Q2, Q3) (1.7) 

The model  is equivalent  to a vertex-pair  model  on the dual 
(hexagonal)  lattice. (14~ In the dual language the configurat ions are specified 
by placing bonds  between nearest  ne ighbor  sites of  the dual  lattice, separat-  
ing unequal  spins on the original lattice (see Fig. 3). Only  0 or 2 bonds  
meet  at every dual lattice site, forming closed loops that  cannot  cross. A set 
of  loops belonging to one configurat ion is called a graph.  When  there is no 
bond  between two neares t -ne ighbor  sites on the dual lattice, we speak of a 
hole. 
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Fig. 3. In the dual language configurations are specified by drawing lines on the dual lattice 
separating unequal spins on the original lattice. At every lattice site, 2 or 0 line elements 
(called bonds) meet. 

To every diamond on the triangular lattice there corresponds a vertex 
pair on the dual lattice (see Fig. 2). In Appendix A we derive all independ- 
ent relations that exist between the numbers n,(q) and show that, as a 
result, the partition sum can be rewritten as 

3 
Z =  [-0)1(1) 0)2(1) 0)3(1)3 N ~'~ l-[ a']i(2)bTi(5)+n~(6)c'/i(7~+nt(8) (1 .8)  

{configurations} i= 1 

with 
0) , (2)  0)i+ l (3 )  C0i+ 2(4) 

(1.9) 
a i -  co,(1) COl+ 1(1) r ) 

= ( 0 ) , ( 5 ) 0 ) , ( 6 ) )  1/2 

b, \0),(3) 0),(4)/ (1.10) 

/0),(7) 0)i(8) o),+1(3 ! 0),+ 2(4!),/2 (1.11) 
c,= [0),(1)]2 0),+1(1) 0),+:(1 ) / 

and i = i (mod 3). 
For the application of the method of Vdovichenko, a more 

appropriate formulation of the partition sum is (8~ 

Z =  0)/(1) Z I G  (1.12) 
G 

where the sum is over all graphs G on the dual lattice and Ia, the 
Boltzmann weight of the configuration specified by graph G, is given by 

3 
16 = H ani(2)b~i(5)+~i(6) c'] i(7~+~i(8~ 

i 1 
3 

= 1-I c?,b?~x?~ (1.13) 
i=1 
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Fig. 4. Weights assigned to corners, bends, and close encounters. 

with the weight 

and 

a, co~(1) co~(2) (1.14) 
xi = c2 - 0)i(7) coi(8) 

no, = 2ni(2) + n,(7) + n,(8) (1.15) 

the total number of corners (single turns) with orientation i in graph G, to 
each of which a weight ci is assigned, 

nb, = ni(5) + ni(6) (1.16) 

the total number of bends (two successive turns in the same direction) with 
orientation i in graph G, to each of which a weight b~ is assigned, and 

nx =ni(2) (1.17) 

the total number of close encounters with orientation i in graph G, to each 
of which a weight x~ is assigned (see Fig. 4). The factor in front of the sum 
rescales 16 so that I c =  1 for G =  ~ (the empty graph representing the 
configuration with all spins parallel). As an example, the Boltzmann weight 
for the graph in Fig. 5 is given by 

- -  6 2 2 2 2 2 
I ~  - C l C 2 C 3 b l b 2 b 3 x  1 (1.18) 

Fig. 5. An example of a graph. The Boltzmann weight of this graph is given by 
Ia:c6c~c~b~b~b~xl. 
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Fig. 6. The ground states for the isotropic model. 

Expressing the corner, bend, and close encounter weights in the 
original language of coupling constants, using Eqs. (1.2) and (1.4), we 
obtain 

c~=exp[-2(L~+Q~)-(K~+I+L~§ ( 1 . 1 9 )  

bi = e x p [ 2 ( L i -  Qi)] (1.20) 

x~ = exp[4(L/+  Q,)] (1.21) 

For the nearest-neighbor Ising model, the coupling constants Li and Q~ are 
zero, so that c~= exp( -K~+l - -Ki+2)  and x~=b~= 1 for i =  1, 2, 3. 
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2. THE ZERO-TEMPERATURE PHASE DIAGRAM 

The ground state for arbitrary coupling constants may be very com- 
plicated since the various tendencies compete and disorder can exist down 
to zero temperature. Therefore we restrict ourselves to the isotropic case: 
K i =  K, L i =  L, and Qi = Q for i =  1, 2, 3. A superficial inspection readily 
shows that the configurations A - F  as shown in Fig. 6 are the ground states 
in some part  of the phase diagram. Since the energies of the configurations 
are given by 

 'nL o t l 1 
EB = EA -- N ln(c2x) 

E c  = E A  - -  N l n ( b Z c 2 x )  (2.1) 

ED = EA -- (3N/2) ln(bc) 

EE = E A -- N ln(c) 

E v = E A -- (N/2) ln(bZc 3) 

we can also find the domains for these ground states, if they are the only 
contenders. In Figs. 7 and 8 we give these domains for Q > 0 and Q < 0. 

! 
bczl/2 = ~'[ L/Q 

! 

G 

b = l  

-5 

B 

c,~2= ! . . '  

~5 

; I I ~ I 
~ 1 ~  = 1 +5 K/Q 

. . . .  i 
E 

c z = l  

Fig. 7. The zero-temperature phase diagram for the isotropic model with Q > 0. The letter A, 
B, C, and E refer to the ground states as given in Fig. 6. The boundary equations follow from 
equating their weights. 
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Fig. 8, The zero-temperature phase diagram for the isotropic model with Q < 0. The letters 
A-F refer to the ground states as given in Fig. 6, 

We prove in Appendix B that the ground states A-E are indeed the ground 
states of the system in their domain. For state F the arguments presented 
are not sufficient to rule out possible other states as ground states. We 
indicate why we find it plausible that F is indeed the ground state in 
its domain. We have not further investigated this case, since it involves 
an examination of the lattice on a larger scale than a hexagon (which is 
sufficient for A-E) and since the free fermion approximation is inaccurate 
in this region of the phase diagram anyway. 

3. THE FREE FERMION C O N D I T I O N S  

A graph consists of a number of closed loops. These loops are not 
independent, because they avoid each other and because weights are 
assigned to close encounters. When xi = bi = 1 (the nearest-neighbor Ising 
model) the loops can be made independent by a trick. This can be 
expressed in the form of a topological theorem, which was first conjectured 
by Feynman (v) and later proven by Sherman(~5'16): 

Z I6 = [ I  (1 § Wp) (3.1) 
G p 

On the left-hand side (lhs) we have essentially the partition sum of 
Eq. (1.12), while on the right-hand side (rhs) there is a product over all 
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closed nonperiodic paths p (any closed nonperiodic trajectory that can be 
traced out by a random walker). Wp, the weight of path p, is given by 

W p = ( - 1 ) ' ~ I p =  - ( -  1)~olp (3.2) 

with np the number of self-crossings, tp the winding number, and Ip the 
Boltzmann weight of path p. Similar to Eq. (1.13) we have (xi= be= 1) 

3 
", (3.3) [I  c,, 

i=1 

with n,, the number of times ci occurs in path p. Note that the set of paths 
is much larger than the set of loops, because self-overlap is allowed and 
because expanding the rhs of the topological theorem also generates 
products of paths that partly overlap. The sum of all terms (=products of 
paths) without overlapping bonds gives exactly the lhs of Eq. (3.1). So all 
other terms in the expansion must cancel. The sign introduced in the path 
weights takes care of that. (7"~6) This is the trick that decouples the paths 
and because the sign is determined by the winding number, it can be 
locally implemented by assigning a proper phase factor exp( _+ ir~/6) to each 
turn in the path. The topological theorem is the foundation on which the 
whole method of Vdovichenko is based. 

Thus the method of Vdovichenko replaces the sum over graphs by a 
sum over products of independent paths. For our model, two complica- 
tions arrise in this crucial step. First, it is evident that in the path weights 
no close encounter weights x~r 1 may occur, otherwise the path cannot 
be interpreted as a random walker trajectory with local transition 
probabilities. Therefore we put for the Boltzmann weight of path p 

3 

Is = H bTb'c7 C' (3.4) 
i=1 

where the close encounter weights xi have been left out. Second, when the 
bend weight bi # 1, the trick above does not give a complete cancellation 
of all additional terms in the expansion of the rhs of Eq. (3.1). In 
Appendix C we show that all terms with an overlap consisting solely of a 
number of occurrences of the bond configurations, depicted in Fig. 9, do 

Fig. 9. The two new bond configurations for a vertex pair that arise when working out the 
product over paths  in the topological theorem (considering only the terms that do not cancel). 

822/69/t-2-17 
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not cancel. So it appears that the topological theorem cannot be used for 
a wider class than the nearest-neighbor Ising model. But we will show 
below that the contributions from the additional paths can be interpreted 
as close encounter weights in the graphs and that under certain restrictions 
the topological theorem is exact even when xi, bir 1 (the two mistakes 
exactly compensate one another). 

We will now try to establish the conditions under which the topologi- 
cal theorem is valid. It  is customary to speak of them as free fermion 
conditions because, when they apply, the model is equivalent to a free 
fermion field theory. I5'6) Consider the diagram equation in Fig. 10. If in all 
graphs on the lhs of Eq. (3.1), each close encounter is replaced by the sum 
of the three diagrams, shown on the rhs of the diagram equation, then all 
surviving terms of the rhs of Eq. (3.1) are generated. So, if there are k close 
encounters in a graph, there are 3 k corresponding paths and the sum of 
their weights must be made equal to that of the graph. When the close 
encounters have no bonds in common, we can do this by restricting the 
close encounter weights in the graph in accordance with the diagram 
equation of Fig. 10: 

9 h,ui hvi (p2 ,.2 ]~2 __ p2 p2 
C 7 X i ~ C 2 ~ - U i + l ~ i + 2 \ ~ i + l ~ i + 2 u i  ~ i + l ~ i + 2 )  (3.5) 

with Pz, v i=0 ,  _+2 for i =  1, 2, 3. On the lhs we have the factor that the 
diagram on the lhs of the diagram equation contributes to the graph 
weight. Similarly, the three terms on the rhs are the factors that the corre- 
sponding diagrams on the rhs of the diagram equation contribute to the 
path weights. In the term on the lhs there are two corner weights and a 
weight for the close encounter (only in the path weights are close encounter 
weights left out, not in the graphs). The first term on the rhs is c~ because 
the close encounter weight xi cannot be incorporated in the path weights. 
The common factor b~+lb~i+2 in the last two terms arises because the two 
extra bonds make bends appear/disappear (for each outward bond there is 
an exchange, bend ~ no bend, because one of its neighboring bonds has 

i ~ : + + 

Fig. 10. The two new vertex pair configurations as given in Fig. 9 can be considered as two 
additional path interpretations of a close encounter. The weight of a close encounter in a 
graph should be choosen equal to the sum of the weights of the three path interpretations of 
this close encounter, i.e., the diagram equation in this figure must hold (when close encounters 
have no bonds in common). 
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changed its direction). The minus sign in the last term is due to the extra 
bond crossing in the last diagram. So we obtain the free fermion conditions 

vi x i =  1 -}-b~'+lbi+2zi, [~i, vi=0,  _+2 (3.6) 

with 

Z i ~ t Ci+ [ Ci + 2 t 2  (3.7) 

When two close encounters share a bond (see Fig. 11), they interfere with 
each other. For instance, for the first diagram in Fig. 11 we have [similar 
to Eq. (3.6)] 

/~l vl ]~/z2 /~ v2 .r _L ~ # 2  ]~//1 + v2 + 2 ]~ Vl ~ XlX3 = 1 + b  2 b 3 z 1 4- (3.8) u 1  ~ 2  ~ 3  '~ ~ 1  ~ 2  t"3 "~1Z3 

with #1, v2 = 0, _+2 and/~2, vl = - 2 ,  0. In the last term, the exponent of b2 
has an extra 2 because, if both close encounters change to a double bond 
configuration, the bond shared by the close encounters makes no exchange, 
bend ~ no bend. Therefore the equation does not factorize into two equa- 
tions with forms similar to that of Eq. (3.6). In this way, for every group 
of close encounters lumping together, new free fermion conditions will be 
found. In spite of all these complications, there exists a nontrivial solution. 
If we choose one direction as special (say direction i) and for the other two 
directions set 

bi+l =bi+2 = 1 (3.9) 

Eq. (3.6) becomes 

Xi=- ln t -Z i ,  X i + l = X i + 2 = l  (3.10) 

and all other free fermion conditions do factorize into products of 
Eq. (3.10), leaving a total of only five restrictions which can be satisfied in 

Fig. 11. Diagrams with two close encounters that have a bond (bond q) in common. 
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a nontrivial way. Translating Eqs. (3.9) and (3.10) back to the Ising 
language with Eqs. (1.19)-(1.21), we obtain 

L~+, = L , + 2 =  Q,+I = Q~+2=0 (3.11) 

and 

cosh[2(Ki+ Li)] 
e x p ( - 4 Q ~ ) =  (3.12) 

cosh [2 (Ki -L~) ]  

These are the free fermion conditions under which the topological 
theorem is valid. They reduce the model to the free fermion model on a 
square lattice, as studied by Fan and W u  ~6) (see Fig. 12). The nonzero 
coupling constants should be renamed as follows: 

K=Ki+I, L=Ki, Q=Qi 

K' = K i + 2 ,  L'= L i 

(3.13) 

(2) 11)(2)12)+ (/)13)0)I 4)= 0) 15)0)16)+ 0)17)0)I 8) (3.14) 

which is the more usual form for the free fermion condition for this model. 
What are the results so far? There are no free fermion solutions in our 

model, other then the ones already found for the square lattices. But if the 

'" ... 

Fig. 12. When Eq. (3.11) holds and we rename the other coupling constants as in (3.13), 
the model is equivalent to the eight-vertex model on a square lattice as shown in the figure 

for i =  1. 

In the dual language it means that the central bond of the vertex pairs, 
depicted in Fig. 2, should be shrunk to a point [since they no longer 
correspoond to a nearest neighbor interaction (Ki = L)] ,  so that the vertex 
pairs transform into the vertices of the eight-vertex model. Equation (3.12) 
can also be written as 



Free Fermion Approximation for Ising Model 259 

free fermion conditions are not met, wrong weights are given only to the 
close encounters in the graphs. So for any set of values of variables ci, bi, 
and xi we can give an approximate solution that fully takes into account 
the corner- and the bend-weights, while the close encounter weights, as 
dictated by the free fermion conditions (3.6), are in general different form 
the real close encounter weights given by Eq. (1.21). When the coupling 
constants are such (as in the ferromagnetic phase at low temperatures) that 
close encounters are rare, the result will be a good approximation (the free 
fermion approximation). 

4. THE FREE FERMION SOLUTION/APPROXIMATION 

We will now continue with the weight (3.4) and use Eq. (3.1). On the 
basis of Eq. (3.1) it is easy to evaluate the partition sum. It is exact only 
when the topological theorem is exact, that is, when the free fermion 
conditions are satisfied. First we write the sum in a new form: 

~ I a = e x p  ln(1 + Wp) =exp (4.1) 
G ~ p  

In the second equation the logarithm has been expanded. The prime 
indicates that the sum now runs over all closed paths (including periodic) 
and ~p, is the period of path p'. Then the partition sum can be written a s  (16) 

 =exp( o+ 
/ = 0  

(4.2) 

with 

Tr MI = ~ ~ ~ Mr(r, ~, fl; r, ~, fi) (4.3) 
r ~ fl  

and Mr(r, ~, fl; r', e', fl') is the sum of weights of all paths of length t, 
starting in r, where it arrives from direction c~ and leaves in direction fl and 
ending in r', where it arrives from direction c~' and leaves in direction fl'. 
The sum in Eq. (4.3) is over all closed paths (also periodic) of length I that 
can be traced out by a random walker. Therefore MI can be constructed 
out of matrices M2 that describe a double step on the lattice. The advan- 
tage of using a two-step matrix M2 as a basic building block instead of 
the one-step matrix M1 is that in using M2 there are only three directions 
of arrival and two for leaving, making M 2 a 6 x 6 matrix, while using M1, 
there would be six directions of arrival, giving a 12 x 12 matrix. (Note that 
all paths lengths are even.) 
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In a derivation similar to that given by Feynman, (7) we find for the 
free energy density 

1 
f =  - ~ l n ( Z )  

= - - ~ ( K ~ + L g + Q ~ ) - ~ 3  ~ dql d q 2 1 n [ d e t ( I - A ( q ) ) ]  
i 

with A the Fourier transform of M2, 

(4.4) 

A~,,~,,,,(q) = ~ exp(iq �9 r) M2(o, ~, fl; r, f ,  fi') 
r 

and I the diagonal matrix. For the matrix A we obtain 

(4.5) 

A~.~,~,(q) 

(y~)-1C2 (~) lblc3 ~ .i 0 0 lblb'~02 7 
6 -  lb'l c2~ (~-1c2 yb'zb'3fb -2 yb'3Cl~ -I 0 

= 0 0 76c~ 76b'zc3~ 6b'1c2~ -1 
I 6 lb'1b'3q~2 6 lb'3c2r '/b'2c1~ 1 '/c~ 0 
\ o 0 y6b'lC3(} y6b]b'zq) 2 6c~ 
\(76)-tb'zc3q3 -1 (y6)-'b'lb'z~ -2 0 0 7 1b'3ci0 

l b '2 ) 

Ob'ib'30 -2 
o 

(~b'3c2~ -1 
7 1C2 

(4.6) 

with 
b; = (ci+ 1 ci + 2)1/2bi (4.7) 

7 = exp(iql ) (4.8) 

6 = exp(iq2) (4.9) 

and ~b = e x p ( -  in/6) is the phase factor for every counterclockwise turn and 
~b-1 for every clockwise turn. These phase factors give to every path p a 
sign (-1) '~,  where tp is the winding number. Working out the determinant 
that determines the free energy density, as given by Eq. (4.4), we find 

d e t ( I -  A(q)) : O~ + L { 0 2 -  2 ( O o O j - O j + , O j +  2) cos(qj) 
j = l  

/ / 0 o - 1 " ]  
+ 4 \ b2 _ 1 ] sin2(qj) 

- -4[Oj+c~(Oo- -2 ) ] s in (q j+l ) s in (q i+2)  } (4.10) 
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with 

~'~0 ~-- I -~- ZI Z2Z 3 (4.11) 

~2j= c~(1 +zj) (4.12) 

q3 = - (q l  + q2) and zj is given by Eq. (3.7). 
This completes the solution. It is exact only when Eqs. (3.9) and (3.10) 

hold. But it also provides a good approximation when close encounters are 
rare, in the important configurations of both the exact and approximate 
partition sums. So we have a good low-temperature approximation for 
those phases, for which at least the ground state and its lowest excitations 
are free of close encounters. We consider this issue only for the isotropic 
case. Phase A (the phase that has configuration A as the ground state) 
meets the necessary requirements. For configuration B we can use the 
symmetries given by Eqs. (1.5)-(1.7) to map it onto configuration A (with 
anisotropic coupling constants). After the symmetry transformation the free 
fermion approximation can be applied, and the result will be a good 
low-temperature approximation (for the free energy) for phase B. So we 
conclude that in the low-temperature regime, for the isotropic model, the 
phases A and B are described well. For high temperatures, bi-~ I, so that 
xi-~ 1 [see Eqs. (3.6) and (3.7)] and the approximation will also be 
reasonable. For the other parts of the phase diagram, no such regions exist 
where the approximation is accurate for both high and low temperatures. 

For the isotropic model with K~>0 and L>~Q>>,O (b~>l, z~>0) the 
free fermion conditions obey [see Eq. (3.6)] 

k 

IF] +b4z) 
j - - 1  

<~Xk[I_(I_x-1)(I_e-4K 120)]k (4.14) 

with x given by Eq. (1.21) and xj the close encounter weights as they are 
dictated by the free fermion conditions, so that 

k 

1<~ 1-[ xj <<-x~ (4.14) 
j = l  

and the approximate partition sum is a strict lower bound. 

5. THE CRIT ICAL S U R F A C E  

The free energy density as given by Eq. (4.4) is analytic unless the 
determinant given by Eq. (4.10) is zero. In the next section we will show 
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that for continuous phase transitions ql, q2 is 0 or n and Eq. (4.10) 
becomes 

d e t ( I -  A(q)) = 6q1,O6q2,O(0 o - O1 - 02 - 03) 2 

~- ~ql,OOq2,n(~-21 - -  ~r - -  O 2  - -  ~c~3)2 

-~- ( ~ q t , x O q 2 , 0 ( O 2  - -  O 0  - -  ~'~1 - -  ~ '~3) 2 

+ 6q,.~bq2,~(03 - 0 o  - 01  - 02) 2 (5.1) 

so that the critical surface is given by the condition that the largest O is 
equal to the sum of the three others or 

0o  + O1 + 02 + 03 = 2 max(O0, 01 , 02, 03) (5.2) 

This is the usual form for the critical condition of free fermion models. (17) 
For the exact free fermion solution, when Eqs. (3.11) and (3.12) hold, 
Eq. (5.2) reduces to the critical condition for the free fermion solution of 
the square lattice as derived by Fan and Wu. (6) 

Part of the critical surface is clearly an artefact of the approximation. 
When we set z i = - I  for i = 1 , 2 , 3 ,  all Q's are zero and Eq.(5.2) is 
satisfied. But then, according to Eq. (3.6), the weights xi of close encounters 
with #,. = vi = 0 will be zero. So all configurations with close encounters of 
this type will have their weights reduced to zero. This dramatic effect is 
solely due to the approximation, since the real weights for these close 
encounters are always larger than zero. 

If, for the isotropic case, we substitute Eqs. (4.11) and (4.12) into the 
critical condition [Eq. (5.2)] we find for the critical surface 

1 + z =  be (5.3) 

(or z = - 1 ,  which we have already exposed as an artefact of the 
approximation). 

To find the singular behavior of the free energy, we expand it about 
qe = O, n(i  = 1, 2). For  instance, when ql = q2 = 0 we have 

f ~fodql fodq21n[(Oo--O1--O2--O3)2+uq2+vqlq2+wq 2] ( 5 . 4 )  

and close to the critical point ( 0 0 - 0 ~ - g 2 2 - 0 3 )  is of O ( T - T c ) .  

Performing the integration yields ~ 

f ' ,~ I T -  Tc] 2 l n l T -  Tcl (5.5) 

and the specific heat will diverge logarithmically unless (v 2 -  4 u w ) ~  0 as 
T ~ Tc; then a different cirtical behavior will be found. 
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6. THE SURFACE FREE ENERGY 

The topological theorem is also valid when an interface contour 
separating two coexisting phases is present in the system, cl) The interface 
contour becomes just another path, decoupled from all others. Thus the 
surface free energy can be calculated between two coexisting phases (one of 
the phases A-F coexisting with its opposite phase, for which the ground 
state has all its spins reversed). In the argument below, we specialize to the 
case of phase A. For the other phases the argument would be analogous. 

At T =  0 a mixed boundary condition, as depicted in Fig. 13, forces the 
two degenerate ground states to coexist, separated by an interface contour. 
At 0 < T <  T~. a typical graph will consist of a number of closed paths and 
an additional interface contour running all the way across the system. The 
proof of Calheiros et  al. I l l l  that the topological theorem can also be 
applied in this situation is roughly the following. The two bonds on the 
dual lattice that mark the change from ( + )  to ( - )  boundary spins are 
connected through a new bond (no bend weight at this bond) outside the 
existing lattice (see Fig. 13). Applying the topological theorem to the lattice 
with the extra bond gives rise to a new class of closed paths that make use 
of this bond. All paths that use the new bond more than once cancel each 
other, leaving as an additional set of paths all random walks starting in 
r = ( 0 , 0 )  and ending in r ' = ( m , n )  (see Fig. 13). Since all paths are 
decoupled [see Eq. (4.1)] the partition sum Z+ with mixed boundary 
conditions as in Fig. 13 can be written as 

+ 

i - : :  i i :: i ! *  
- 

Fig. 13. A typical configuration for the ferromagnetic phase at 0 < T < T  c when the 
boundary condition is chosen such that the spin-up phase is forced to coexist with the 
spin-down phase. An interface contour  runs from r = (0, 0) on the left side of the system to 
r' = (m, n) on the right side. The average tilt angle 0 of the interface is given by tan 0 = n/m. 
The points r and r '  are connected through a new bond, of which only the end parts are shown. 
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with Z+ + the partition sum with an all ( + ) boundary. The sum runs over 
all paths p' (the interface contours) that start in (0, 0) and end in (m, n). 
Then the surface free energy is (12'13) 

F,(m, n) =- - i n  \ Z+ + = 

Similar to the way we obtained the bulk free energy, the random walk 
formalism will give for the angle-dependent free energy density in the 
thermodynamic limit 

1 
f~(0) = - [1 + tan2(0)] 1/2 (6.3) 

x l imm.o~rnl ln l f ]~dql f ]~dq2f2~dq2exp(- iq ' r )  T r ( I - A , q ) ) - ~ ] ~  -2-~no2--~ 

with r =  (m, n) and tan(O)=n/m. This expression can be evaluated with 
the steepest descent method. Note that the saddle point does not 
change (in the thermodynamic limit) when T r ( I - A ( q ) )  1 is replaced by 
[ d e t ( I -  A(q))] - 1 because 

6 C ( q )  

Tr(I-A(q)) 1= S (1-'~,)-'=det(i_A(q)) (6.4) 
i = 1  

with 2i the eigenvalues of the matrix A and 

6 

c(q)= ~ [ I  ( 1 - 2 j ( q ) )  (6.5) 
i = 1  j ~ i  

which is harmless at the saddle point. The steepest descent method 
yields (13) 

fs(O) = k 1 cos(0) + k2 sin(0) (6.6) 

with 

kl = - i [ q l ( m O d  ~)] 

k2 = - i  [q2(mod n)] 
(6.7) 

where q is the solution of d e t ( I - A ( q ) ) =  0 (q is purely imaginary) and 

~ql det(I--  A(q)) 
tan(0) - ~q2 d e t ( I -  A(q)) 

(6.8) 
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Note that the determinant that gives the bulk partition sum also com- 
pletely determines the angle-dependent free energy density. 

For a continuous transition, f,--* 0 as T ~  To. Therefore kj, k2-+0, 
which justifies putting ql, q2 equal to 0 or ~ in our search for the critical 
surface. 

Finally, we remark that the equilibrium crystal shape can be obtained 
as a Legendre transformation of the surface free energy. (~2'~3/If Y ( X )  is the 
equilibrium crystal shape in Cartesian coordinates, then 

X =  2k  x (6.9) 

Y= )~ky (6.10) 

with kx and ky given by Eq. (6.7) and )~ a constant controlling the volume 
of the crystal. 

7. S U M M A R Y  

We have derived an approximate expression for the partition function 
of an Ising model on a triangular lattice with further-neighbor interactions 
by extending the method of Vdovichenko, which is based on an equiv- 
alence between a summation over graphs and a summation over products 
of unrestricted paths with only local weights. The equivalence is exact only 
when the free fermion conditions are satisfied and is approximate outside 
the free fermion region. For the general solution, the path sum gives 
approximate weights to the close encounters in the graphs. Outside the free 
fermion region, the close encounter weights so generated depend on the 
configuration and cannot be seen as a local shift of the xi. 

The approximation will be accurate when close encounters are rare. 
We have found these regions by deriving the zero-temperature phase 
diagram for isotropic coupling constants. We find that in phase A and 
phase B [-through the symmetry transformations (1.5) (1.7)] close encoun- 
ters are absent in the ground state and in the lowest excitations (see Fig. 6). 
So we conclude that the phases A and B are well described in the low- 
temperature phase by the free fermion approximation for the free energy. 

On the basis of this free energy we have calculated the critical surface 
and the surface free energy for the corresponding coexisting phases, using 
the extension of Vdovichenko's method by Calheiros et al. In addition, we 
have determined the equilibrium crystal shapes. 
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A P P E N D I X A .  CONSISTENCY RELATIONS BETWEEN THE 
N U M B E R S  OF VERTEX PAIRS 

What are the relations between the numbers of vertex pairs ni(q) for 
an arbitrary configuration of the system? First, the total number of vertex 
pairs with orientation i is given by the total number of sites 

8 

y" n~(q)=U (a.1) 
q = l  

Next, note that every bond or hole is part of five different vertex pairs. We 
assign a fraction f:  of the bond (hole) to each of them, so that the bond 
(hole) becomes distributed over these five vertex pairs. The most general 
distribution is shown in Fig. 14, together with the condition that 

4 

~, f j  = 1 (A.2) 
j - -0 

The total number of bonds N~ with orientation i for an arbitrary configura- 
tion is given by 

N b =fo(ni(3) + n~(4) + ni(5) + ni(6) 

+ fl(ni+ 2(2) + ni+ 2(3) + ni+ 2(5) + ni+2(7)) 

+ f2(n,+ 1(2) + n~+ 1(4) + ni+ 1(6) q- ni+ 1(7)) 

f3(n,+ 2(2) + n~+ =(3) + n,+ 2(6) + n~+ 2(8)) 

+ f4(n~+l(Z)+n~+1(4)+n~+l(5)+n~+l(8)) (A.3) 

If we choose two different distributions f j  and f5 and subtract the resulting 
expressions for N,. b, we obtain the following consistency relation between 

4 

Afjsj, i=O (A.4) 
j=O 

the numbers nq" 

f4 f3 f4 f3 

Fig. 14. For the vertex pairs, the fractions f,. of the bonds that are assigned to it are 
indicated. A bond is part of five different vertex pairs and the sum of the fractions of the bond 
assigned to each of these vertex pairs is 1. 
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with 

So, i = n~(3) + n~(4) + ng(5) + n~(6) 

Sl,~ = n~+ 2(2) + ni+ 2(3) + ni+ 2(5) + n~+ ~(7) 

S 2 ,  i = hi+ 1(2) + ni+ 1(4) q- Eli+ 1(6) + ni+ 1(7) 

s3,i = ni+ 2(2) + ni+ 2(3) + n,+ 2(6) + ni+ 2(8) 

S4, i = Eli+ 1(2) -It- ni+ 1(4) + hi+ 1(5) -I- ni+ ~(8) 

and 

~f, =f,-j~, 

while the condition (A.2) becomes 

4 

(A.5) 

(A.6) 

(A.7) 

(1.8) 

(A.9) 

j = 0,..., 4 (A.10) 

~L=0 (A.ll) 
j = 0  

We can use eq. (A.11) to eliminate one of the variables A~ in favour of the 
others in Eq. (A.4) so that the remaining A~ are independent and we find 
the solution 

SO, i = S I ,  i = $2,  i ~--- $3,  i = $4,  i (A. 12) 

or equivalently 

ni(5) = ni(6) (1.13) 

ng(7) = n,(8) (1.14) 

ni(2)+n,(7)=ni+l(3)+ni+l(5)=ni+2(4)+ni+2(5) (1.15) 

In Eqs. (A.1) and (A.13) (A.15) we have a total of 15 independent relations 
between the numbers ni(q). With these, the partition sum given by Eq. (1.3) 
can be rewritten in the form of Eq. (1.8) by eliminating ni(1), hi(3), and 
ni(4) in favor of ni(2), ni(5)+ni(6), and ni(7)+ni(8), leaving only 
2 4 -  15 = 9 independent variables: ai, bi, and ci. 

In Section 2 we need the relations between the numbers of vertex pairs 
for the isotropic case where ai = a, bi = b, and ci = c for i--  1, 2, 3. Summing 
Eq. (A.1) and (1.13)-(A.15) over i, we obtain the consistency relations for 
the isotropic case: 

8 

n(q) = 3N (1.16) 
q = l  

n(3) =n(4)  (A.17) 
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n(5)=n(6) (A.18) 

n(7)=n(8) (A.19) 

2n(2) +n(7) +n(8)=n(3)+n(4)  +n(5)+  n(6) (A.20) 

A P P E N D I X  B. THE G R O U N D  STATES 

We restrict ourselves to the isotropic case and set at= a, bi= b, and 
ci=c (or Ki=K, Li=L, and Qi=Q) for i=  1, 2, 3. In Fig. 6 we show 
six configurations A-F that are likely candidates for the ground states. 
Assuming that these configurations are all the possible ground states, Figs. 
7 and 8 give the zero-temperature phase diagrams for Q > 0 and Q < 0, 
respectively. Let us now try to prove the correctness of these phase 
diagrams. The argument consists of three parts. In the first part we try to 
establish the zero-temperature phase diagram, using the consistency rela- 
tions between the numbers of vertex pairs as derived in Appendix A. The 
consistency relations take into account the connectivity properties of the 
vertex pairs only to some extent. They are nessessary but not sufficient con- 
ditions for the existence of a configuration. For this reason, for the ground 
states B, E, and F, the proof turns out to be incomplete. In the second part 
we employ a different strategy, which proves to be useful for establishing 
the ground states B and E. For this, consider all possible configurations on 
a hexagon (see Fig. 15). Note that for configurations B and E in Fig. 6 
every hexagonal part of the lattice is in the same configuration (apart from 
symmetry). If this hexagonal configuration has a lower energy then all 
others, the corresponding configuration B or E is the ground state. With 
this additional argument, the complete zero-temperature phase diagram 
can be found, except for the region in Fig. 8 where configuration F is 
assumed to be the ground state. In the last part it will be made plausible 

w - : ) +  + + + + + + + + + + + ( - -  

+ + + + + + + + 
1 2 3 4, 

.C)+ + -.~J+ ~ + + ( _  + 
+ + + + ' ~ _  + + + _ ' ~ f 2  

5 6 7 8 9 

10 11 12 13 

F ig .  15. All  p o s s i b l e  c o n f i g u r a t i o n s  on  a h e x a g o n  ( a p a r t  f r o m  s y m m e t r y ) .  
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(but not proven) that configuration F is indeed the ground state for this 
last region. 

In the first part, all we need are the consistency relations and an 
expression for the weight of a configuration. In Appendix A we have derived 
that for every configuration the numbers of vertex pairs n(q)=Zin i (q )  
must obey the relations 

8 

n(q) = 3N (B.1) 
q = l  

and 

2n(2) + n(7) + n(8) = n(3) + n(4) + n(5) + n(6) (B.2) 

Summing them, we get 

n(1) + 3n(2) + 2[n(7) + n(8)] = 3N (B.3) 

From the expression for the partition sum given by Eq. (1.8), together 
with the definition (1.14), we see that the weight W of a configuration is 
proportional to 

W..~ (cxl/2)2"(2)b "Is) + n(6)cn(7)+ n(S) 1,,I1) + ,(37 + n(4) (B.4) 

For  every point of the phase diagram, we will have to look for the values 
of n(2), n(5) + n(6), n(7) + n(8), and n(1) + n(3) + n(4) that will maximize 
the weight W, given the restrictions posed by the consistency relations. 
Since the consistency relations are not sufficient to imply the existence of 
a configuration, we will end by examining the realizability of the proposed 
solutions. 

Because W ~  ln(3)+n(g)bn(5~+n(6), while for the consistency relations 
only the total sum n(3) + n(4) + n(5) + n(6) is relevant and not how the 
total sum is broken up into n (3 )+n(4 )  and n(5)+n(6) ,  it is favorable to 
set n(3) + n(4) = 0 if b > 1, and to set n(5) + n(6) = 0 if b < 1. First consider 
the case b > 1 and put n(3) + n(4) = 0. Then we can eliminate n(5) + n(6) in 
favor of n(2) and n(7)+n(8) ,  using Eq. (B.2), and we have 

W ~  (bcxl/2) 2"~2) (be) n(7) + ,(891 ~(1) (B.5) 

To decide which state will be the ground state we consider all possible 
orderings of the weights bcx 1/2, bc, and i, thereby subdividing case b > 1 
into the following four subcases: 

(i) 1 >bc, bcxm: Then the maximum weight is obtained when 
n(1) = 3N and all other n(q)'s are zero. 
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(ii) bcxl/2>bc, 1: In this case we have to maximize n(2). According 
to Eq. (B.3), n(2)~<N and n ( 2 ) = N  only when n(1)=n(7)+n(8)=O. Sub- 
stituting this into Eq. (B.2), we see that n(5)+n(6)=2N [remember we 
put n(3)+ n(4)= 0]. The only way to improve on this might be by making 
n ( 7 ) + n ( 8 ) > 0  for bc>l.  But note that increasing n(7)+n(8)  means 
decreasing n(2) [-see Eq. (B.3)] and at best we can exchange two vertex 
pairs of type q = 2 for three vertex pairs of type q = 7, 8, which would make 
the weight of the configuration lower. Thus n(2)= N, n(5)+ n(6)= 2N, and 
all other n(q)'s zero gives the largest weight W for this case. 

(iii) be > 1 > bcxl/2: In this case we must maximize n(7)+n(8)  and 
minimize n(2). So we have n(7) + n(8) = 3N/2 and n(2) = 0 [see Eq. (B.3)]. 
Substituting this into Eq. (B.2), we see that  n(5)+n(6)=3N/2. Thus, 
having n(5) + n(6) = n(7) + n(8) = 3N/2 and all other n(q)'s zero, the weight 
W obtains its largest value. 

(iv) bc>bcxl/2> 1: Again n(5)+n(6)=n(7)+n(8)=3N/2 is a good 
option. Improvement is possible only by making n(2)>0,  although it 
makes n(7)+n(8)<3N/2. From Eq. (B.3) we see that we can exchange 
three vertex pairs of type q = 7, 8 for two vertex pairs of type q-- 2. If this 
increases the weight W [when (bcxl/2)4> (be) 3, that is, when bcx2> 1] we 
should eliminate all vertex pairs of type q = 7, 8 in this way, obtaining 
n ( 2 ) = N  and n(5)+n(6)=2N. Thus, for bcx2<l, we should take 
n(5)+n(6)=n(7)+n(8)=3N/2, while for bcx2>l, it is better to have 
n(2) = N and n(5) + n(6) = 2N. 

Next consider the case b < 1 and put n(5) + n(6) -- 0. Then the weight 
W becomes 

m ~  (cxl/2)2n(2)(c)n(7)+ n(8) 1,(1)+ n(3)+ n(4) (B.6) 

Note that the weight W has the same form as Eq. (B.5), except that the 
factors b are missing, and that the consistency relations are unchanged, 
except that n(5)+ n(6) is replaced by n(3)+ n(4). Thus, analogous to the 
case b > 1, the weight W obtains its maximum value as follows: 

(V) l>c,  CX1/2: n(1)= 3N. 

(vi) cxm>c,  l : n ( 2 ) = N a n d n ( 3 ) + n ( 4 ) = 2 N .  

(vii) c > l > c x l / 2 : n ( 3 ) + n ( 4 ) = n ( 7 ) + n ( 8 ) = 3 N / 2 .  

(viii) c>cxl/2> l: n(3)+n(4)=n(7)+n(8)=3N/2 for cx2<l and 
n(2) = N and n(3) + n(4) = 2N for cx 2 < 1. 

If all the optimal solutions would correspond to one of the six configura- 
tions A-F as given in Fig. 6, we would be done. But remember that the 
consistency relations to not imply the existence of a configuration. So it is 
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not even clear that the solutions found for the above cases (i)-(viii) are 
actually realizable. Inspecting Fig. 6, we see that the solutions for the cases 
(i)-(vi) are realized by configuration A, B, C, or D. For case (vii) we found 
that the weight W reaches its maximum value when n ( 3 ) + n ( 4 ) =  
n(7) + n (8 )=  3N/2. This turns out not to be possible, as will be proven in 
the last part of this appendix. There we show that, if we are to avoid vertex 
pairs of type q =  1, 2 [ n ( 1 ) = n ( 2 ) = 0 ,  so that, according to Eqs. (B.2) and 
(B.3), n ( 7 ) + n ( 8 ) = n ( 3 ) + n ( 4 ) + n ( 5 ) + n ( 6 ) = 3 N / 2 ] ,  the maximum for 
n(3) + n(4) is only N/2. So it is not clear which state will be the ground 
state here. For  case (viii) the ground state is configuration B if cx 2 > 1, but 
if bx z < 1, we stumble over the same problem as in case (vii). 

The dotted lines in Figs. 7 and 8 mark the regions that belong to case 
(vii) and case (viii) for cx 2 > 1, the parts of the phase diagrams for which 
the ground states are still unknown. In this second part of our argument 
we will prove the correctness of these parts of these phase diagrams as far 
as configurations B and E are concerned. Consider all possible configura- 
tions on a hexagon (see Fig. 15) and write the weight of a configuration of 
the system as a product of hexagon weights. Each site of the lattice will act 
as the central site of a hexagon. In this way every diamond (or vertex pair) 
will be counted twice, so to each hexagon we will assign only half of its 
energy. There are only 13 different configurations possible on the hexagon 
(apart from symmetry), as shown in Fig. 15. The hexagon energy could be 
taken equal to the sum of the six diamonds that are present in it. Then 
there is no contribution from the K-interactions between the spins that lie 
on the boundary of the hexagon. To make the distribution of the total 
energy over the hexagons adjustable, we prefer to count the contribution of 
the K-interactions between the boundary spins for a fraction f,  and the 
contribution of the K-interactions that involve the central spin of the 
hexagon for a fraction 1 - f  (0~<f~< 1). The hexagon energy eh is then 
given by 

1 [ faJGJ+~+(1- f )ao~r j ]  + L  ~ ~rJaJ+2 
~h= --2 1 j=i  

6 } 
+ Q  ~ aoa/rj+icrj+ 2 (B.7) 

j=l  

We list the hexagon energies e h in Table I together with the ground states 
in which these hexagons are present. 

If we choose f = 2/3, hexagon configuration 3 has the lowest energy in 
the entire region assigned to configuration E in both the phase diagrams of 
Figs. 7 and 8. This proves that it is the correct ground state for this region. 
Next consider the two regions where configuration B is assumed to be the 

822/69/1-2-18 
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Table l .  Hexagon Configurations and Their Weights 

Hexagon 
configuration ~h Ground state 

1 - (3K+3L+3Q) A 
2 - ( 2 - f ) K  L 
3 - K + L - Q  E 
4 - ( 1 - 2 f ) K - L + Q  
5 - ( 1 - 2 f ) K + L + 3 Q  D,F 
6 - f K +  L 
7 f K + L  
8 - 3 ( f K + L )  C 
9 (1 - -2 f )K+L+Q V 

10 K - L - Q  
ll K+ L 3Q B 
12 (2 - 3 f ) K -  L 
13 3 ( 1 - 2 f ) K - 3 L + 3 Q  C,D 

ground state. Both regions are divided into two parts by the dotted lines. 
We are concerned with the parts where it has not yet been proved that 
configuration B is the ground state. If we choose f = 1/3 (when Q > 0) and 
f =  2/5 (when Q < 0), we find that hexagon configuration 11 has the lowest 
energy for these parts. Thus, configuration B is the ground state in the 
whole region assigned to it in Figs. 7 and 8. 

What remains is whether configuration F is correctly assigned in 
Fig. 8, This we can make plausible but not prove (since configuration F 
consists of two types of hexagon configurations, we cannot use the same 
arguments as we used for configurations B and E above). If we consider 
only the configurations that can be constructed out of the last six vertex 
pairs of Fig. 3, then, among these, configuration F is the state with the 
lowest energy in this last region. For  then, only hexagon configurations 5, 
9, and 11 can occur and all possible states are obtained from stacking the 
rows R and R' as shown in Fig. 16. Thus, only two possible ground states 
can be constructed. If row R has a lower energy than row R', we should 
use only row R and we obtain configuration F, and if row R' has the 
lowest energy, we stack only row R' and we obtain configuration D. In this 
last region, row R has the lowest energy, so that configuration F is the best 
candidate for the ground state. Since configuration F also has a larger 
energy than configurations B and E here, the first two vertex pairs are 
probably not so important in this part of the phase diagram. 

Finally, note that n ( 3 ) + n ( 4 ) = 0  for row R'. Therefore, if n (1)=  
n(2) = 0, n (3 )+  n(4) reaches its maximum value in configuration F, where 
it is N/2, as was stated in the first part of our argument. 
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5 5 5 . . . . . .  5 5 5 

R 9 9 9 9 . . . . . .  9 9 9 

5 5 5 . . . . . .  5 5 5 

5 5 5 . . . . . .  5 5 5 

/T 5 13 5 13 . . . . . .  5 13 5 

5 5 5 . . . . . .  5 5 5 

F i g .  16. T w o  r o w s  R a n d  R '  e a c h  o f  w h i c h  c o n s i s t s  o f  t h r e e  l a y e r s  o f  o v e r l a p p i n g  h e x a g o n s .  

The numbers refer to the hexagon configurations in Fig. 15. 

A P P E N D I X  C. T H E  T O P O L O G I C A L  T H E O R E M  

In this appendix we consider to what extent the terms generated by 
expanding the rhs of Eq. (3.1), cancel. We will follow the arguments given 
by Burgoyne (16) for the nearest neighbor Ising model on a square lattice. 
Apart from the difference in lattices (ours is hexagonal), we have the 
complication that the bend weights bi v a 1. We will not repeat the complete 
proof by Burgoyne, but indicate only where slight modifications are 
needed. 

First it is proved that the terms of the rhs with only single bonds add 
up to Z Ic.  Since we work on a hexagonal lattice, there are no crossings 
(which means no complications with different path interpretations for a 
crossing as one has for the square lattice) and the statement is trivially true. 

Next consider all terms on the rhs which have overlapping bonds. 
Group together the terms that have the same bonds the same number of 
times. Consider one such group and choose an N-fold bond (N~>2). 
Remove this N-fold bond so that each terms of the group is a product of 
closed paths and a set of N path segments. The terms leading to the same 
path segments are collected in subgroups. For  the nearest neighbor Ising 
model the terms within each subgroup cancel each other. This is proved by 
induction. First it is shown that for a subgroup for which all path segments 
are different, the terms cancel. Second it is shown that if the terms within 
a subgroup cancel, then replacing one path segment (different from all 
others) by a path segment already present results in a new subgroup (with 
less terms because not every way of connecting the path segments gives an 
existing term) that also cancels. 

For  the first part of the proof consider a subgroup for which all path 
segments are different. Every way of connecting the segments (that is, each 
term) corresponds to a permutation ~ that specifies which of the N 
neighbor bonds on one side of the N-fold bond is connected to which one 
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on the other side. If the permutation is un(even), then the number of 
crossings at the N-fold bond is un(even). For  the nearest neighbor Ising 
model the absolute weights of all the terms of the subgroup are equal, 
while their sign depends on the sign (even or uneven) of the permutation. 
Because half the permutations are un(even), the sum of the terms is 
zero. In our case not all the terms have the same absolute weight, because 
b i #  1 (see Fig. 9). But when two neighbor bonds on the same side of the 
N-fold bond are parallel (say bond numbers i and j), then the terms corre- 
sponding to the permutations rc and re' = (~zi, 7zj) o ~, cancel. Here (rci, rcj) is 
a transposition of rci and r% When N>~ 3 there are always two parallel 
neighbor bonds. So, only when N = 2  and the configuration of the 
neighboring bonds is as in Fig. 9 will there be no cancellation. 

In the second part  of the proof, the cancellation of the terms within a 
subgroup where some of the segments are equal is derived from the 
cancellation of a subgroup where one of those equal segments (say ql) is 
replaced by one (say q0) that is different from all others. If qo is chosen 
such that the two terminal bonds (the bonds that border on the N-fold 
bond) are equal to the terminal bonds of ql, this second part  of the proof 
remains valid in our case. Note that the terms that did not cancel in the 
first part  of the proof do not impair the induction process, since they are 
not needed in the second part  (because there are no terms with just two 
equal path segments). 
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